SPECIFICATION FOR
PORTLAND-COMPOSITE CEMENT

SRI LANKA STANDARDS INSTITUTION
Draft Sri Lanka Standard
SPECIFICATION FOR PORTLAND-COMPOSITE CEMENT

SLS XXXX : 2020

Gr. 10

Copyright Reserved
SRI LANKA STANDARDS INSTITUTION
17, Victoria Place
Elvitigala Mawatha
Colombo 8
SRI LANKA
CONTENTS

CLAUSE PAGE

FOREWORD 1
1 SCOPE 1
2 REFERENCES 1
3 DEFINITIONS 2
4 PORTLAND-COMPOSITE CEMENT (PCC) 3
6 COMPOSITION 8
7 MECHANICAL, PHYSICAL AND CHEMICAL REQUIREMENTS 10
8 MARKING 11
9 DELIVERY AND PACKAGING 13
10 MANUFACTURER’S CERTIFICATE 13
11 INDEPENDENT TESTS 13
12 SAMPLING 14
13 INSPECTION AND TESTING 14
14 COMPLIANCE OF A LOT 14

TABLES

TABLE 1 - Composition of PCC and the notations 9
TABLE 2 - Compressive strength and setting time requirements 10
TABLE 3 - Chemical requirements 11
TABLE 4 - Scale of sampling 17

FIGURES

FIGURE 1- Format for labelling the rear side of the cement bag 12
FIGURE 2 - Sampling Tube 16

APPENDICES

APPENDIX A-SAMPLING OF CEMENT 16
APPENDIX B-GUIDANCE ON THE USE OF CEMENT 19
APPENDIX C-SOME USEFUL INFORMATION ON ADULTERATED CEMENT 21
APPENDIX D-GUIDELINES FOR SELECTION OF CEMENT TYPES AS PER SRI LANKA STANDARDS 22

iii
Draft Sri Lanka Standard
SPECIFICATION FOR PORTLAND-COMPOSITE CEMENT

FOREWORD

This standard was approved by the Sectoral Committee on Building and Construction Materials and was authorized for adoption and publication as a Sri Lanka Standard by the Council of the Sri Lanka Standards Institution on 2020-XX-XX.

This standard has been prepared to enable manufacturers to produce Portland-composite cement equivalent to ordinary Portland Cement on the basis of compressive strength at 2 days, 7 days and 28 days.

For the purpose of comparison of cement type given in this standard with those given in BS EN 197-1, corresponding equivalent cement type with respect to BS EN 197-1 is given where applicable.

Appendix B of the standard provides some guidelines on the use of cement while Appendix C gives some useful information on adulterated cement. Further guidance on usage of this cement with respect to other cements in Sri Lanka is also included in Appendix D to satisfy a pressing need of the cement users.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or observation shall be rounded off in accordance with SLS 102. The number of significant places retained in the rounded off value shall be the same as that of the specified value in this standard.

In the preparation of this standard the assistance derived from the publications of the International Organization for Standardization (ISO), European Committee for Standardization (CEN) and British Standards Institution (BSI) are gratefully acknowledged.

1 SCOPE

This standard covers the requirements for constituents, composition, mechanical properties, physical properties, chemical properties, packaging, marking and delivery of Portland-Composite Cement (PCC).

This specification pertains to two strength classes of PCC.

NOTE: Requirements for other cements are covered in separate Sri Lanka standards (see Clause 2).

2 REFERENCES

ISO 2859-1 Sampling procedures for inspection by attributes - Part 1
BS 8500 Concrete. Complementary British Standard to BS EN 206-1. Method of specifying and guidance for the specifier
BS EN 196-6 Method of testing cement Part 6: Determination of fineness
BS EN 197-1 Cement - Part 1: Composition, specifications and conformity criteria for common cements
BS EN 206-1 Concrete - Specification, performance, production and conformity
3 DEFINITIONS

For the purpose of this standard, the following definitions shall apply;

3.1 additives: Constituents other than main constituents, minor additional constituents or calcium sulphate which are added to improve the manufacture or the properties of the cement, such as grinding aids, pigments or pack set inhibitors.

3.2 cement: An inorganic finely ground hydraulic binder which, when mixed with water, forms a paste which sets and hardens by means of hydration reactions and processes and which, after hardening, retains its strength and stability even under water.

3.2.1 composite sample: Homogeneous mix of spot samples taken

 a) at different points; or
 b) at different times,

from a supply of cement in the bulk or bag form obtained by thoroughly mixing the combined spot samples and, if necessary, reducing the size of the resulting mix.

3.3 consignment: Quantity of cement delivered at a given time by a single manufacturer, factory, depot or dispatching centre. It may consist of one or more lots.

3.4 increment: Quantity of cement taken in a single operation of the sampling equipment used.

3.5 laboratory sample: Sample prepared by thoroughly mixing and if necessary reducing from a large composite sample (spot or composite sample) and intended for use by laboratories undertaking the tests.

3.6 lot: In any consignment or part of a consignment, all the packages of cement or quantity of bulk cement belonging to one batch of manufacture or supply shall constitute a lot.
3.7 main constituent: Specially selected inorganic material used in a proportion exceeding a total of 5 % (m/m) related to the sum of all main and minor additional constituents (see 5.1 and 5.2).

3.8 manufacturer: The establishment responsible for the quality of cement manufactured.

3.9 minor additional constituents: Specially selected inorganic materials used in a proportion not exceeding a total of 5 % (m/m) related to the sum of all main and minor additional constituents. (see 5.1 and 5.2).

3.10 percent (m/m): Mass of a constituent expressed as a percentage of the total mass of the constituents.

3.11 packer/distributor: The establishment responsible for the quality of cement packed and/or distributed in Sri Lanka.

3.12 sample: Quantity of cement taken at random, in accordance with the specified sampling plan, from a large quantity (cement stored in silo, stock of bags, wagons, trucks, etc.) or from a fixed lot, relating to the intended tests. A sample may consist of one or more increments.

3.13 sample for retest: Sample which is to be kept for possible subsequent test in the event of the results from tests carried out on laboratory samples being in doubt or dispute.

3.14 spot samples: Samples which is taken at the same time and from one and the same place, relating to the intended tests, and which can be obtained by combining one or more immediately consecutive increments.

3.15 strength class of cement: Class of compressive strength as specified in Table 2.

4 PORTLAND-COMPOSITE CEMENT (PCC)

Portland-composite Cement (PCC) conforming to this standard shall consist of an intimate and uniform blend of Ordinary Portland Cement (OPC) and pozzolana and/or granulated blast furnace slag and/or fly ash and/or limestone, and it is produced either by intergrinding Portland cement clinker, pozzolana and/or granulated blast furnace slag and/or fly ash and/or limestone and gypsum, or by blending OPC and pozzolana and/or granulated blast furnace slag and/or fly ash and/or limestone.

Portland-composite cement shall be a blend of more than one main constituent material other than Portland cement clinker specified in 5.1.

5 CONSTITUENTS

5.1 Main constituents

5.1.1 Portland cement clinker

Portland cement clinker is a hydraulic material made by sintering a precisely specified mixture of raw materials (raw meal, paste or slurry) containing elements, usually expressed as oxides,
CaO, SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$ and small quantities of other materials. The raw meal, paste or slurry is finely divided, intimately mixed and therefore homogeneous.

Portland cement clinker shall consist of at least two-thirds by mass of calcium silicates (3CaO.SiO$_2$ and 2CaO.SiO$_2$). The remainder shall consist of aluminium and iron containing clinker phases and other compounds. The ratio by mass CaO/SiO$_2$ shall be not less than 2.0. The magnesium oxide, MgO content shall not exceed 5.0 % (m/m) when determined in accordance with SLS ISO 29581-1.

5.1.2 Granulated blast furnace slag

Granulated blast furnace slag is made by rapid cooling of a slag melt of suitable composition, as obtained by smelting iron ore in a blast furnace and contains at least two-thirds by mass of glassy slag and possesses hydraulic properties when suitably activated.

Granulated blast furnace slag shall consist of at least two-thirds by mass of the sum of calcium oxide (CaO), magnesium oxide (MgO) and silicon dioxide (SiO$_2$). The remainder contains aluminium oxide (Al$_2$O$_3$) together with small amounts of other compounds. The ratio by mass (CaO + MgO) / (SiO$_2$) shall exceed 1.0 when determined in accordance with the test method given in SLS ISO 29581-1.

5.1.3 Pozzolanic materials

5.1.3.1 General

Pozzolanic materials are natural substances of siliceous or silico-aluminous composition or a combination thereof. Pozzolanic materials do not harden in themselves when mixed with water but, when finely ground and in the presence of water, they react at normal ambient temperature with dissolved calcium hydroxide (Ca(OH)$_2$) to form strength-developing calcium silicate and calcium aluminate compounds. These compounds are similar to those which are formed in the hardening of hydraulic materials. Pozzolanas consist essentially of reactive silicon dioxide (SiO$_2$) and aluminium oxide (Al$_2$O$_3$). The remainder contains iron oxide (Fe$_2$O$_3$) and other oxides. The proportion of reactive calcium oxide for hardening is negligible. The reactive silicon dioxide content shall be not less than 25.0 % (m/m) when determined in accordance with the test method given in SLS ISO 29581-1.

Pozzolanic materials shall be correctly prepared, i.e. selected, homogenized, dried, or heat treated and comminuted, depending on their state of production or delivery.

Although fly ash has pozzolanic properties, it is separately dealt with under 5.1.4

5.1.3.2 Natural pozzolana

Natural pozzolanas are usually materials of volcanic origin or sedimentary rocks with suitable chemical and mineralogical composition and shall conform to 5.1.3.1.

5.1.3.3 Natural calcined pozzolanas

Natural calcined pozzolanas are materials of volcanic origin, clays, shales or sedimentary rocks, activated by thermal treatment and shall conform to 5.1.3.1.

5.1.4 Fly ashes

5.1.4.1 General
Fly ash is obtained by electrostatic or mechanical precipitation of dust-like particles from the flue gases from furnaces fired with pulverized coal. Fly ash obtained by other methods shall not be used in cement that conforms to this standard.

Fly ash may be siliceous or calcareous in nature. The former has pozzolanic properties; the latter may have, in addition hydraulic properties. The loss on ignition of fly ash determined in accordance with the method given in SLS ISO 29581-1 for cement but using an ignition time of 1 h for fly ash, shall not exceed 5.0 % (m/m).

Fly ash with a loss on ignition of 5.0 % to 9.0 % (m/m) may also be accepted, provided that particular requirements for durability and for compatibility with admixtures are met (see SLS 1144: Part 1).

The upper limit of loss on ignition of the fly ash used as a main constituent for the production of cement shall be stated on its packaging and/or delivery note.

NOTE: The method described in SLS ISO 29581-1 is applicable to determine loss on ignition in cement, however this can also be applied to fly ash

5.1.4.2 Siliceous fly ash

Siliceous fly ash is a fine powder of mostly spherical particles having pozzolanic properties. It consists essentially of reactive silicon dioxide (SiO₂) and aluminium oxide (Al₂O₃). The remainder contains iron oxide (Fe₂O₃) and other compounds.

The content of reactive calcium oxide shall be less than 10.0 % (m/m), and the content of free calcium oxide, as determined by the method described in SLS ISO 29581-1 shall not exceed 1.0 % (m/m). Fly ash having a free calcium oxide content higher than 1.0 % (m/m) but less than 2.5 % (m/m) is also acceptable provided that the requirement on expansion (soundness) does not exceed 10 mm when tested by the Le Chatellier’s method specified in SLS ISO 9597 using a mixture of 30 % (m/m) of siliceous fly ash and 70 % (m/m) of Portland cement conforming to SLS 107. The reactive silicon dioxide content shall be not less than 25.0 % (m/m).

5.1.4.3 Calcareous fly ash

Calcareous fly ash is a fine powder, having hydraulic and/or pozzolanic properties. It consists essentially of reactive calcium oxide (CaO), reactive silicon dioxide (SiO₂) and aluminium oxide (Al₂O₃). The remainder contains iron oxide (Fe₂O₃) and other compounds. The content of reactive calcium oxide shall be not less than 10.0 % (m/m). Calcareous fly ash containing between 10.0 % and 15.0 % (m/m) of reactive calcium oxide shall contain not less than 25.0 % (m/m) of reactive silicon dioxide.

Adequately ground calcareous fly ash containing more than 15.0 % (m/m) of reactive calcium oxide, shall have a compressive strength of at least 10.0 MPa at 28 days when tested in accordance with SLS ISO 679. Before testing, the fly ash shall be ground and the fineness, expressed as the proportion by mass of the ash retained when wet sieved on a 40-µm mesh sieve, shall be between 10 % and 30 % (m/m). The test mortar shall be prepared with ground calcareous fly ash only instead of cement. The mortar specimens shall be demoulded 48 h after preparation and then cured in a moist atmosphere of relative humidity of at least 90 % until tested.
The expansion (soundness) of calcareous fly ash shall not exceed 10 mm when tested by the Le Chatellier’s method specified in SLS ISO 9597 using a mixture of 30 % (m/m) of calcareous fly ash ground as described above and 70 % (m/m) of Portland cement conforming to SLS 107.

NOTE: If the sulphate content measured relative to SO$_3$ content of the fly ash exceeds the permissible upper limit for the sulphate content of the cement then this has to be taken into account for the manufacture of the cement by appropriately reducing the calcium sulphate-containing constituents.

5.1.5 Rice husk ash

Rice husk, a waste of the rice milling industry, which contains amorphous SiO$_2$ embedded in the body of the husk, on combustion under controlled burning, generates about 15 to 25 % of its mass as ash (rice husk ash). The ash shall contain at least 85 % (m/m) of amorphous silicon dioxide. (see 3.14)

At present rice husk ash is not used as a main constituent in Sri Lanka.

5.1.6 Burnt shale

Burnt shale, specifically burnt oil shale, is produced in a special kiln at temperatures of approximately 800 °C. Owing to the composition of the natural material and the production process, burnt shale contains clinker phases, mainly dicalcium silicate and monocalcium aluminate. It also contains, besides small amounts of free calcium oxide and calcium sulphate, larger proportions of pozzolanically reacting oxides, especially silicon dioxide. Consequently, in a finely ground state burnt shale shows pronounced hydraulic properties like Portland cement and in addition pozzolanic properties.

Adequately ground burnt shale shall have a compressive strength of at least 25.0 MPa at 28 days when tested in accordance with SLS ISO 679 for cement. The test mortar shall be prepared with finely ground burnt shale only instead of cement. The mortar specimens shall be demoulded 48 h after preparation and cured in a moist atmosphere of relative humidity of at least 90 % until tested.

The expansion (soundness) of burnt shale shall not exceed 10 mm when tested by the Le Chatellier’s method specified in SLS ISO 9597 for cement, using a mixture of 30 % (m/m) of ground burnt shale and 70 % (m/m) of Portland cement conforming to SLS 107.

At present burnt shale is not used as a main constituent in Sri Lanka.

NOTE: If the sulphate content measured relative to SO$_3$ content of the burnt shale exceeds the permissible upper limit for the sulphate content of the cement then this has to be taken into account for the manufacture of the cement by appropriately reducing the calcium sulphate-containing constituents.

5.1.7 Limestone

Limestone shall meet the following requirements:

The calcium carbonate (CaCO$_3$) content calculated from the calcium oxide content in accordance with SLS ISO 29581-1 shall be at least 75 % (m/m).
The clay content, when determined by the methylene blue test in accordance with the test method given in BS EN 933-9, shall not exceed 1.20 g/100 g. For this test the limestone shall be ground to a fineness of approximately 500 m²/kg determined as specific surface in accordance with BS EN 196-6.

The total organic carbon (TOC) content, when tested in accordance with the test method given in BS EN 13639 shall not exceed 0.20 % (m/m).

5.2 Minor additional constituents

At the option of the manufacturer, minor additional constituents may be used in the manufacture of PCC provided the total amount of such materials shall not exceed 5.0 % (m/m) related to the sum of all main and minor additional constituents of the cement.

Minor additional constituents are specially selected, inorganic natural mineral materials, inorganic mineral materials derived from the clinker production process or constituents as specified in 5.1 unless they are included as the main constituents in the cement.

Minor additional constituents, after appropriate preparation, and on account of their particle size distribution, improve the physical properties of the cement (such as workability or water retention). They can be inert or have slightly hydraulic, latent hydraulic or pozzolanic properties. However, requirements are not specified for them in this respect.

Minor additional constituents shall be correctly prepared, i.e. selected, homogenized, dried and comminuted depending on their state of production or delivery. They shall not increase the water demand of the cement appreciably, impair the resistance of the concrete or mortar to deterioration in any way or reduce the corrosion protection of the reinforcement.

NOTE: Information on the minor additional constituents in the cement should be available from the manufacturer on request.

5.3 Calcium sulphate

Calcium sulphate is added to the other constituents of cement during its manufacture to control setting. Calcium sulphate can be gypsum (calcium sulphate dihydrate, CaSO₄·2H₂O), hemihydrates (partially dehydrated gypsum CaSO₄·½H₂O) or anhydrite (anhydrous calcium sulphate CaSO₄) or any mixture of them. Gypsum and anhydrite are found naturally. Calcium sulphate is also available as a by-product of certain industrial processes.

5.4 Additives

Additives for the purpose of this standard are constituents not covered in 5.1 to 5.3 which are added to improve the manufacture or the properties of the cement.

The total quantity of additives shall not exceed 1.0 % (m/m) of the cement (except for pigments). The quantity of organic additives on a dry basis shall not exceed 0.2 % (m/m) of the cement. A higher quantity may be incorporated in cements provided that the maximum quantity, in percentage, is declared on the packaging and/or the delivery note.

These additives shall not promote corrosion of the reinforcement in concrete or impair the properties of the cement or of the concrete or mortar made from the cement.
Admixtures for concrete, mortar or grouts in dry form shall not be incorporated in PCC conforming to this standard.

When admixtures for concrete, mortar or grouts conforming to the BS EN 934 series are used in cement the standard notation of the admixture shall be declared on bags or delivery documents.

6 COMPOSITION

The composition of the PCC shall be as shown in Table 1.
TABLE 1 - Composition of PCC and the notations

<table>
<thead>
<tr>
<th>Designation</th>
<th>Notation</th>
<th>Equivalent cement type in BS EN 197-1</th>
<th>Cement type</th>
<th>Equivalent cement type in BS EN 197-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland-composite cement</td>
<td>PCC/ A-M</td>
<td>CEM II/A-M</td>
<td>(1)</td>
<td>80 to 88</td>
</tr>
<tr>
<td></td>
<td>PCC/ B-M</td>
<td>CEM II/B-M</td>
<td>(2)</td>
<td>65 to 79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinker</th>
<th>Pozzolana</th>
<th>Granulated blast furnace slag</th>
<th>Fly ash</th>
<th>Limestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>Natural</td>
<td>Natural calcined</td>
<td>Siliceous</td>
<td>Calcareous</td>
</tr>
<tr>
<td>K</td>
<td>P</td>
<td>Q</td>
<td>S</td>
<td>V</td>
</tr>
<tr>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>80 to 88</td>
<td>12-20</td>
<td>0 to 5</td>
<td>0 to 5</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

1 Maximum limestone percentage is limited to 12%.

NOTE 1: In Portland-composite cements, PCC/A-M and PCC/B-M, the main constituents other than clinker shall be declared by notation of the cement.

eg: Portland-composite cement containing in total a quantity of granulated blast furnace slag (S), siliceous fly ash (V) and limestone (L) of between 12% and 20% by mass has the notation as PCC/A-M(S-V-L).
7 MECHANICAL, PHYSICAL AND CHEMICAL REQUIREMENTS

7.1 Mechanical requirements

The compressive strength of mortar prisms shall be determined in accordance with SLS ISO 679 at the laboratory temperature of 27 ± 2 °C.

The moist air room or the cabinet for storage of the test specimens in the mould shall be continuously maintained at the temperature of 27 ± 1 °C and a relative humidity not less than 90%. The temperature of the water in the storage container of test specimens shall be maintained at 27 ± 1 °C.

7.1.1 Standard strength

The standard strength of cement is the compressive strength of mortar prisms determined at 28 days and shall conform to the requirements given in column 4 of Table 2.

Two classes of standard strength are included in this standard, i.e. Class 32.5 and Class 42.5 (see column 1 of Table 2).

7.1.2 Early strength

The early strength of cement is the compressive strength of mortar prisms determined at either 2 or 7 days and shall conform to the requirements given in column 2 or 3 of Table 2 respectively.

Two classes of early strength are included for each class of standard strength, a class with ordinary early strength indicated by N and a class with high early strength indicated by R.

7.2 Physical requirements

7.2.1 Initial setting time

The initial setting time of cement paste of standard consistency as determined by the method described in SLS ISO 9597 shall conform to the requirements given in column 5 of Table 2.

TABLE 2 - Compressive strength and setting time requirements

<table>
<thead>
<tr>
<th>Strength class</th>
<th>Compressive strength N/mm²</th>
<th>Initial setting time min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early strength</td>
<td>Standard strength</td>
</tr>
<tr>
<td></td>
<td>2 day (2)</td>
<td>7 day (3)</td>
</tr>
<tr>
<td>32.5 N</td>
<td>-</td>
<td>≥ 16.0</td>
</tr>
<tr>
<td>32.5 R</td>
<td>≥ 10.0</td>
<td>-</td>
</tr>
<tr>
<td>42.5 N</td>
<td>≥ 10.0</td>
<td>-</td>
</tr>
<tr>
<td>42.5 R</td>
<td>≥ 20.0</td>
<td>-</td>
</tr>
</tbody>
</table>
7.2.2 Soundness

The cement shall not have an expansion of more than 10 mm when tested for soundness by the method described in SLS ISO 9597.

7.3 Chemical requirements

In determining the chemical composition of cement, either the analysis by wet chemistry described in SLS ISO 29581-1 or by X-ray fluorescence (XRF) technique given in SLS ISO 29581-2 may be used. In the case of dispute, unless otherwise agreed by all parties, only the test methods described in SLS ISO 29581-1 shall be used.

The chemical properties of all strength classes of the cement shall conform to the requirements listed in Table 3.

TABLE 3 - Chemical requirements

<table>
<thead>
<tr>
<th>Property (1)</th>
<th>Strength class (2)</th>
<th>Requirement % (m/m) (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate content (expressed as SO₃)</td>
<td>32.5 N, 32.5 R, 42.5 N</td>
<td>≤ 3.5</td>
</tr>
<tr>
<td></td>
<td>42.5 R</td>
<td>≤ 4.0</td>
</tr>
<tr>
<td>Chloride content</td>
<td>All</td>
<td>≤ 0.10</td>
</tr>
</tbody>
</table>

8 MARKING

8.1 PCC manufactured in compliance with this standard shall be marked on the bag legibly and indelibly with the particulars as given in (a) to (j). When supplied in bulk, manufacturer’s certificate, the delivery note or the invoice shall also provide the following information:

a) Name and address of the manufacturer (see 3.9);
b) Name and address of the importer, packer and distributor, where relevant (see 3.12);
c) Generic name of the product in Sinhala, Tamil and English;
 that is: දෙළිංජලව මුහුණු මෝටර්
 සාවිතේ තාකිය සිංහල
 මස්ංකල මත
 Portland-composite Cement
d) Notation of the product depending on the main constituents other than clinker;
 eg: Portland-composite cement containing in total a quantity of granulated blast furnace slag(S), siliceous fly ash(V) and limestone (L) of between 12% and 20% by mass has the notation as PCC/A-M(S-V-L);
e) Main constituents in the product other than clinker;
 eg: granulated blast furnace slag(S), siliceous fly ash(V) and limestone (L)
f) Strength class: e.g. 42.5 N (see Table 2);
g) The week of manufacture and the date of packing;
h) Net mass of the contents, in kg, if packed in bag or, in tonne (1000 kg), if supplied in bulk;

i) Any other information required in the standard
 eg: type of admixture used, etc; and

j) Best before date (as declared by the manufacturer).

NOTE 1: Attention is drawn to the product certification marking facilities offered by the Sri Lanka Standards Institution. See the inside back cover of this standard.

NOTE 2: For the “best before” date to be valid, cement should be delivered, stored and used as specified in Appendix B.

8.2 In the case of bagged cement the size of the letters used for (c) and (f) shall be not less than 12 mm in height.

8.3 In the case of bagged cement brand name, SLS mark (if applicable) and generic name should be displayed on the front side of the bag. Information in Figure 1 should be displayed on the rear side of the bag.

![FIGURE 1- Format for labelling the rear side of the cement bag](image)
9 DELIVERY AND PACKAGING

The cement shall be supplied in bulk, or packed in bags with sufficient strength and constructed to prevent damage or deterioration of cement, during normal handling.

Any container used for bulk supply shall have an airtight fully enclosed body robust enough to prevent spillage of cement, and a special facility for dustless discharge such as air slide, pneumatic discharger or spiral conveyor.

When cement is supplied in bag form, the minimum net mass of each bag shall be 50.0 kg. The net mass of the bag of cement shall be determined by its gross mass and the mass of package. The nominal mass of the empty bag shall be marked to the nearest one gram on the package, where facilities exist for such marking. If mass of an empty bag is not displayed on the bag, mass should be determined by weighing 10 empty bags used for the same batch. These empty bags should be supplied by the manufacturer (see 3.9) or packer/distributor (see 3.12).

The bags of cement which are not in good condition, due to causes such as moisture patches, torn bags, burst stitches, spilling cement or exudation of cement dust, shall be rejected.

10 MANUFACTURER’S CERTIFICATE

The manufacturer/packer/distributor shall be satisfied that the cement at the time of its delivery complies with the requirements of this standard. In case of imported cement time of delivery means the time of delivery to a port in Sri Lanka.

The manufacturer/packer/distributor on request shall forward a certificate to this effect to the purchaser or his representative. The certificate shall include the results of tests on samples of cement relating to the material delivered.

Following test information shall be provided:

a) Test results relevant to mechanical, physical and chemical requirements.

b) Mineral composition of clinker.

11 INDEPENDENT TESTS

If the purchaser/end-user or his representative requires independent tests, they shall be carried out in accordance with this standard on the written instructions of the end-user or his representative.

The manufacturer/vendor shall supply, free of charge, the cement required for testing unless otherwise specified in the enquiry and order, the cost of the tests shall be borne as follows:

a) by the manufacturer/vendor if the results show that the cement does not comply with the requirements of this standard; and

b) by the end-user if the results show that the cement complies with the requirements of this standard.
12 SAMPLING

Where the compliance of a lot to the requirements of this specification is to be assessed based on statistical sampling and inspection, sampling scheme given in Appendix A shall be applied.

In case a sample is required for independent tests, it shall be taken, at the option of the end-user or his representative, before delivery or within one week after delivery of the cement as per Appendix A.

Where the compliance with this specification is to be assured based on manufacturer’s control system coupled with type testing and check tests or any other procedures, appropriate schemes of sampling and any other inspection procedures can be adopted.

All the samples shall be directed to the testing authority with immediate effect and the tests shall be commenced within 4 weeks of the delivery of the sample to the testing authority.

13 INSPECTION AND TESTING

13.1 Inspection

13.1.1 Lot supplied in bulk

Where the cement supplied is in bulk form, each container shall be inspected at the sampling stage for the relevant delivery and packing requirements as per 9.

13.1.2 Lot supplied in bags

Where the cement supplied is in bag form, each bag selected in A.2.1, shall be inspected at the sampling stage for the marking and packaging requirements specified in 8 and 9 respectively. Required facilities shall be provided by the manufacturer/vendor responsible for the quality or its representative.

13.2 Testing

The laboratory sample (see A.3) shall be tested for all the mechanical, physical and chemical requirements specified in 7.

14 COMPLIANCE OF A LOT

Any lot, when sampled in accordance with 12, fails to comply with any of the following requirements during the period declared by the manufacturer, shall be deemed not to comply with this standard.

14.1 Delivery and packing

14.1.1 Lot supplied in bulk

Each container shall comply with the relevant delivery and packing requirements in 9.
14.1.2 Lot supplied in bags

a) Each bag in the sample drawn in accordance with 12 shall comply with the marking requirements given 8

b) The number of bags not conforming to relevant delivery and packaging requirements in 9 shall be less than or equal to the corresponding acceptance number given in column 3 of Table 4.

14.2 Laboratory sample

The laboratory sample (see A.3) shall comply with the mechanical, physical and chemical requirements given in 7.
APPENDIX A

SAMPLING OF CEMENT

A.1 SAMPLING EQUIPMENT

A sampling tube (see Figure 2) or an appropriate instrument shall be used.

FIGURE 2 - Sampling Tube
A.2 SCALE OF SAMPLING

A.2.1 Sampling from bags

Where the cement packed in bags, the sample shall comprise the number of bags that is given in column 2 of Table 4, selected at random from the lot in accordance with the lot size given in column 1 of Table 4.

TABLE 4 - Scale of sampling

<table>
<thead>
<tr>
<th>Lot size (N) (1)</th>
<th>Sample size (n) (2)</th>
<th>Acceptance Number (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 280</td>
<td>08</td>
<td>00</td>
</tr>
<tr>
<td>281 to 1200</td>
<td>32</td>
<td>01</td>
</tr>
<tr>
<td>1201 to 3200</td>
<td>50</td>
<td>02</td>
</tr>
</tbody>
</table>

NOTE: Table 4 was prepared in accordance with ISO 2859-1:1999 - Sampling procedure for inspection by attribute and Part 2 - Sampling schemes index by Accepted Quality Limit (AQL) for lot by lot inspection.

To ensure the randomness of selection, a method given in SLS 428 shall be used.

Alternatively all the bags in the lot may be arranged in a serial order and starting from any bag, every nth bag be selected in order to meet the requirement given in column 2 of Table 4, n being the integral part of N/n where N is the lot size (number of bags in a lot) and n is the sample size (number of bags have to be selected).

Approximately equal quantities of cement shall be taken from each bag selected and make composite sample in order to meet the requirements of laboratory sample (see A.3).

Appropriate sampling instrument described in A.1 shall be used to collect the cement from the bags.

A.2.2 Sampling from large containers and bulk transport (after loading or before unloading)

Sufficient number of increments shall be drawn from evenly distributed points of each container (wagon, truck, etc...) and a composite sample shall be made in order to meet the requirements of laboratory sample (see A.3). Increments shall be taken by using a sampling tube or appropriate sampling instrument.

Care shall be taken not to take materials from the top and bottom layers of the mass of cement. The thickness of the layer to be considered is at least 150 mm.

A.2.3 Sampling while charging or discharging

Sampling shall be carried out with suitable increments at regular intervals when the cement is being charged into the container/silos or being discharged from the containers/silos and composite sample shall be made in order to meet the requirements of laboratory sample (see A.3). The increments shall be such that one increment is taken per 10 tonnes of cement or as per the agreement between the manufacturer (or vendor) and the customer (or purchaser). Appropriate sampling instrument shall be used.
A.3 LABORATORY SAMPLE

Prior to preparation of laboratory sample, the composite sample shall be carefully homogenized (in a laboratory) with clean dry implements, not liable to react with the cement.

Homogenization shall be achieved by a suitable mixing machine if available. In the absence of a mixing machine, careful mixing shall be done with a shovel on a clean dry surface.

Immediately after homogenization of sample, it shall be divided equally (see Note) into required number of laboratory samples by using a sample divider or other suitable means. The laboratory sample shall be of such a size that all the tests whatever specified can be carried out twice.

NOTE: In general at least 5 kg of cement sample would be sufficient to carry out all the tests twice.

A.4 PACKING AND STORAGE

The samples shall be packed, dispatched and stored in polyethylene/polypropylene (PE/PP) bags with thickness at least 100 μm or rigid containers made of material that is inert to cement and non-corrodible. They shall be dry, impervious (to air and moisture) and clean. In this respect they shall not have been used for packing products which are likely to affect the samples.

Each of the laboratory samples shall be divided into two equal portions and packed separately (second portion of the laboratory sample for retest if required).

To minimize the aeration,

a) Where the rigid container is used, it shall, as far as possible, be completely filled and their closure shall be sealed (integral seal or other suitable means).

b) Where the PE/PP bag is used, the air in the bag shall, as far as possible, be removed and provision shall also be made to seal them where necessary.

The samples shall be stored below 30 °C until commencement of testing.

NOTE: It should be noted that packaging, however air-tight, cannot in the long term prevent a certain amount of aeration, which may vary depending on the properties of the packing material.
APPENDIX B
GUIDANCE ON THE USE OF CEMENT

B.1 SAFETY WARNING

Dry cement in normal has no harmful effect on dry skin. When cement is mixed with water, alkali is released. Precautions should therefore be taken to avoid dry cement entering the eyes, mouth and nose and to prevent skin contact with wet cement.

Repeated skin contact with wet cement over a period may cause irritant contact dermatitis. The abrasiveness of the particles of cement and aggregate in mortar or concrete can contribute to this effect. Continued contact during a working day can lead to cement burns with ulceration but this is not common. Some people are sensitive to the small amounts of chromate which may be present in cement and can develop allergic contact dermatitis, but this is rare.

When working in places where dry cement becomes airborne, protection for the eyes, mouth and nose should be worn.

When working with wet mortar or concrete, waterproof or other suitable protective clothing should be worn such as long sleeved shirts, full length trousers, waterproof gloves and shoes. Clothing contaminated with wet cement, mortar or concrete should be removed and washed before further use.

If cement enters the eye it should immediately be washed out thoroughly with clean water and medical treatment should be sought without delay. Wet mortar or concrete on the skin should be washed off immediately.

B.2 STORAGE

To protect cement from premature hydration after delivery, bulk silos should be waterproof and internal condensation should be minimized.

Paper bags should be stored clear of the ground, not more than eight bags high and protected by a waterproof structure. As significant strength losses begin after several weeks of storage in bags in normal conditions, and considerably sooner under adverse weather conditions or high humidity, deliveries should be controlled and used in order of receipt.

B.3 GROUTING AND RENDERING

Where cement is to be used in grouts or renders that are pumped through small apertures, such as spray nozzles, it is recommended that the user passes the cement or suspension through a screen of suitable mesh aperture to retain any occasional coarse particles.

B.4 HEAT GENERATION

The cement hydration process generates heat, particularly in the first few days. Cements with higher early strength usually have a higher initial rate of heat generation than those with lower early strength. A higher initial rate of heat generation may be an advantage for thinner concrete sections, because it reduces the need for extended striking times. However, it may be a disadvantage for larger sections on account of the temperature gradients, which are set up.
B.5 FINENESS

A variety of Cement of different fineness is available. In general, fineness varies from about 300 m2/kg to 400 m2/kg with the latter value in the order of that of rapidly hardening Portland cement. If the selection of a cement is to be based on fineness, the advantages and disadvantages listed below should be taken into account with respect to the specific application under consideration.

Cement with a greater fineness has the following advantages:

a) possesses a higher volume per unit mass and hence yields greater volume of cement in volume batched concrete or mortar;
b) develops higher early strength although standard strength (28 day) may not be very different from any other cement;
c) improves workability and also causes less bleeding in mortar or concrete; and
d) requires a lesser curing period.

Cement with a greater fineness has the following disadvantages:

a) decays rapidly when left exposed to the atmosphere;
b) gives rise to higher shrinkages and greater proneness to cracking;
c) more amenable to “pack set” when cement bags are piled one above the other;
d) higher cost of grinding;
e) requires more gypsum to retard the initial set of cement which has more tricalcium aluminate available for early hydration;
f) faster alkali-aggregate reaction if such a reaction is likely with the aggregates used;
g) generates heat more rapidly during the chemical reaction; and
h) requires good initial curing.

However, it should be noted that most of the disadvantages can be overcome by greater quality control.

B.6 STRENGTH CLASSES OF CEMENT

Strength Class 52.5 cement can be manufactured or imported for a specific project under the permission of Sri Lanka Standards Institution.
APPENDIX C

SOME USEFUL INFORMATION ON ADULTERATED CEMENT

C.1 GENERAL

Most common form of adulteration is to produce underweight cement bags. The next common form is to insert warehouse cement sweepings which may be partially aerated. Less common forms are inclusion of very fine quarry dust and inclusion of hardened cement lumps in finely ground form. Every user should exercise caution in the purchase of cement and if adulteration is suspected it may be useful to inform the manufacturer/vendor.

C.2 IDENTIFICATION

The best form of identification of adulterated cement is to conduct all the tests specified in this standard. It is also possible to identify adulteration by some simple observations. Some means of identification using simple observations are as follows:

a) check whether machine stitches of cement bags are tampered with. Generally hand stitches are similar on both sides of the bag and are of inferior quality;

b) if the cement bag bends sharply when handled or transported, it is likely to have been tampered with;

c) when the bottom stitched end of the bag is pounded on the floor a few times to pack the cement, and if the bag is tampered with, the opening used for filling cement at factory (a top cover of the cement bag) will open out easily or can be seen as damaged slightly;

d) the gross mass of a cement bag is approximately 100 g to 200 g more than the net mass specified, otherwise it is likely to have been tampered with;

e) when equal volumes of cement and water are shaken in a test tube or clear glass bottle and left for a few minutes slight adulteration may show as a dark spray and heavy adulteration may show up as a precipitate; and

f) when cement is spread into a thin layer on a glass sheet and then covered with another similar glass sheet, adulterated cement may show up patches of slightly different shades of colour.
APPENDIX D

GUIDELINES FOR SELECTION OF CEMENT TYPES AS PER SRI LANKA STANDARDS

<table>
<thead>
<tr>
<th>Cement type</th>
<th>SLS No</th>
<th>Strength class</th>
<th>(a) Normal strength concrete (grade 30 & below)</th>
<th>(b) Medium strength concrete (greater than grade 30 & up to 40)</th>
<th>(c) Concrete subjected to severe exposure condition</th>
<th>(a) & (c)</th>
<th>(b) & (c)</th>
<th>Pre-cast concrete</th>
<th>Cement based products</th>
<th>Rendering</th>
<th>Plastering</th>
<th>Masonry work</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>SLS 107</td>
<td>32.5 N/R</td>
<td>** ***</td>
<td>**</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.5 N/R</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>BHC</td>
<td>SLS 1247</td>
<td>32.5 N/R</td>
<td>** ***</td>
<td>** ***</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.5 N/R</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>PLC</td>
<td>SLS 1253</td>
<td>32.5 N/R</td>
<td>** ***</td>
<td>** ***</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.5 N/R</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>PCC</td>
<td>SLS XXX</td>
<td>32.5 N/R</td>
<td>** ***</td>
<td>** ***</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.5 N/R</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>MC</td>
<td>SLS 515</td>
<td>22.5</td>
<td>Not Recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

*** – Strongly recommended, ** – Recommended, * – May be used under technical guidance.

NOTE 1: Specific guidelines with respect to usage of different types of cement for concrete are given in BS EN 206-1 and BS 8500.

NOTE 2: For the specific exposure condition of “concrete subject to water pressure in a very aggressive condition rich in sulphates”, PLC content in the mix should be more than that of OPC, if PLC is selected.